Prove $AM \ge HM$ using AM, GM inequality

SOLUTION :

let $x_i > 0 \forall i \in N, i \le n$ [i.e, $x_1 > 0, x_2 > 0, x_3 > 0, \dots, x_n > 0$]

Now , applying AM , GM inequality for x_1 , x_2 , x_3 ,, x_n

[The above inequation is 2nd equation] there is equation - (2) is missing at the end.

$$\sum_{i=1}^{n} \frac{1}{\lambda_i} \gg \left(\prod_{i=1}^{n} \frac{1}{\lambda_i} \right)^n$$

multiply $0 \notin 2$ $\left(\frac{\chi_1 + \chi_2 + \chi_3 + \dots + \eta_n}{n}\right) \cdot \left(\frac{1}{\chi_1} + \frac{1}{\chi_2} + \dots + \frac{1}{\chi_n}\right) \gg \left(\chi_1 \chi_2 \dots + \eta_n\right) \times \frac{1}{(\chi_1 + \chi_2 \dots + \eta_n)}$ $\frac{d_1 + d_2 + d_3 + \dots + d_n}{n} \xrightarrow{n} \frac{1}{\begin{pmatrix} 1 \\ d_1 \\ d_2 \\ d_2 \\ d_n \end{pmatrix}}$

n di D' di 1=1 n

HENCE PROVED